Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 98, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493287

RESUMEN

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Diabetes Mellitus Tipo 2 , Dieta Mediterránea , Femenino , Humanos , Masculino , Biomarcadores , Enfermedades Cardiovasculares/epidemiología , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Telómero , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
2.
Front Endocrinol (Lausanne) ; 14: 1243906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867510

RESUMEN

Background: Obesity (OB) is a chronic metabolic disease with important associated comorbidities and mortality. Vitamin D supplementation is frequently administered after bariatric surgery (BS), so as to reduce OB-related complications, maybe including chronic inflammation. Aim: This study aimed to explore relations between vitamin D metabolites and components of the inflammasome machinery in OB before and after BS and their relations with the improvement of metabolic comorbidities. Patients and methods: Epidemiological/clinical/anthropometric/biochemical evaluation was performed in patients with OB at baseline and 6 months after BS. Evaluation of i) vitamin-D metabolites in plasma and ii) components of the inflammasome machinery and inflammatory-associated factors [NOD-like-receptors (NLRs), inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators] in peripheral blood mononuclear cells (PBMCs) was performed at baseline and 6 months after BS. Clinical and molecular correlations/associations were analyzed. Results: Significant correlations between vitamin D metabolites and inflammasome-machinery components were observed at baseline, and these correlations were significantly reduced 6 months after BS in parallel to a decrease in inflammation markers, fat mass, and body weight. Treatment with calcifediol remarkably increased 25OHD levels, despite 24,25(OH)2D3 remained stable after BS. Several inflammasome-machinery components were associated with improvement in metabolic comorbidities, especially hypertension and dyslipidemia. Conclusion: The beneficial effects of vitamin D on OB-related comorbidities after BS patients are associated with significant changes in the molecular expression of key inflammasome-machinery components. The expression profile of these inflammasome components can be dynamically modulated in PBMCs after BS and vitamin D supplementation, suggesting that this profile could likely serve as a sensor and early predictor of the reversal of OB-related complications after BS.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Humanos , Calcifediol , Inflamasomas , Leucocitos Mononucleares , Obesidad/complicaciones , Obesidad/cirugía , Obesidad Mórbida/cirugía , Vitamina D , Inflamación
3.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35158762

RESUMEN

Malnutrition in patients with head and neck cancer is frequent, multifactorial and widely associated with clinical evolution and prognosis. Accurate nutritional assessments allow for early identification of patients at risk of malnutrition in order to start nutritional support and prevent sarcopenia. We aimed to perform a novel morphofunctional nutritional evaluation and explore changes in inflammasome-machinery components in 45 patients with head and neck cancer who are undergoing systemic treatment. To this aim, an epidemiological/clinical/anthropometric/biochemical evaluation was performed. Serum RCP, IL6 and molecular expression of inflammasome-components and inflammatory-associated factors (NOD-like-receptors, inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, cell-cycle and DNA-damage regulators) were evaluated in peripheral-blood mononuclear-cells (PBMCs). Clinical-molecular correlations/associations were analyzed. Coherent and complementary information was obtained in the morphofunctional nutritional assessment of the patients when bioimpedance, anthropometric and ultrasound data were analyzed. These factors were also correlated with different biochemical and molecular parameters, revealing the complementary aspect of the whole evaluation. Serum reactive C protein (RCP) and IL6 were the most reliable parameters for determining patients with decreased standardized phase angle, which is associated with increased mortality in patients with solid malignancies. Several inflammasome-components were dysregulated in patients with malnutrition, decreased phase angle and dependency grade or increased circulating inflammation markers. A molecular fingerprint based on gene-expression of certain inflammasome factors (p27/CCL2/ASC) in PBMCs accurately differentiated patients with and without malnutrition. In conclusion, malnutrition induces a profound alteration in the gene-expression pattern of inflammasome-machinery components in PBMCs. A comprehensive nutritional assessment including novel morphofunctional techniques and molecular markers allows a broad characterization of the nutritional status in cancer patients. Profile of certain inflammasome-components should be further studied as potential targets for nutrition-focused treatment strategies in cancer patients.

4.
Clin Nutr ; 40(3): 1028-1038, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32723508

RESUMEN

BACKGROUND AND AIM: The incidence of type 2 diabetes mellitus (T2DM) has increased worldwide. One of the first actions to reduce the risk of this disease is to implement healthy dietary models; however, no universal dietary strategies have so far been established. In addition, MicroRNAs (miRNAs) are emerging as new biomarkers to predict disease. We aimed to study whether miRNAs could be used to select the nutritional therapy to prevent T2DM development in patients with cardiovascular disease. METHODS: All patients from the CORDIOPREV study without T2DM at baseline according to the American Diabetes Association (ADA) diagnostic criteria (n = 462) were included in the present study. Of them, after a median dietary intervention period of 60 months with two diets (Low fat or Mediterranean diets), 107 developed T2DM and 355 subjects did not develop the disease. The plasma levels of 24 miRNAs were measured at baseline by qRT-PCR. The risk of T2DM was evaluated by Cox regression analysis based on the plasma levels of the miRNAs at baseline and according to the dietary intervention. Finally, pathways analyses were carried out to identify target genes regulated by the miRNAs studied and cellular processes which could be associated with T2DM development. RESULTS: Cox regression analyses showed that patients with low plasma levels of miR-145 at baseline showed a higher risk of developing T2DM after consumption of an LFHCC diet. In addition, patients with low levels of miR-29a, miR-28-3p and miR-126 and high plasma levels of miR-150 at baseline showed a higher risk of developing T2DM after consumption of the Med diet. Finally, pathways analysis showed an interaction of miR-126 and miR-29a in the modulation of FoxO, TNF-α, PI3K-AKT, p53 and mTOR signaling, associated with T2DM development. CONCLUSION: Our results suggest that circulating miRNAs could be used in clinical practice as a new tool for selecting the most suitable diet to prevent type 2 diabetes mellitus development in patients with cardiovascular disease. CLINICAL TRIALS NUMBER: NCT00924937.


Asunto(s)
Enfermedades Cardiovasculares/dietoterapia , Diabetes Mellitus Tipo 2/prevención & control , Dieta con Restricción de Grasas , Dieta Mediterránea , MicroARNs/sangre , Adulto , Anciano , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Diabetes Mellitus Tipo 2/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Método Simple Ciego , Adulto Joven
5.
Clin Cancer Res ; 26(4): 957-969, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31624102

RESUMEN

PURPOSE: Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models. EXPERIMENTAL DESIGN: Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. RESULTS: We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. CONCLUSIONS: This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.


Asunto(s)
Tumores Neuroendocrinos/tratamiento farmacológico , Péptidos/farmacología , Neoplasias Hipofisarias/tratamiento farmacológico , Receptores de Somatostatina/agonistas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Quinasas Janus/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Péptidos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Transducción de Señal , Células Tumorales Cultivadas , Adulto Joven
6.
Mol Nutr Food Res ; 58(9): 1897-906, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24995559

RESUMEN

SCOPE: Dietary fat influences systemic inflammatory status, which determines the progression of age-associated diseases. Since somatostatin (SST), cortistatin (CORT), and ghrelin systems modulate inflammatory response, we aim to comprehensively characterize the presence and regulation of the components of these systems in the peripheral blood mononuclear cells (PMBCs), a subset of white blood cells placed at the crossroad between diet and inflammation, in response to diets with different fat composition, and during the postprandial phase in elderly subjects. METHODS AND RESULTS: The applied nutrigenomic, inflammation-related PBMC-based approach revealed that the majority of components of SST/CORT and ghrelin systems are present in the human PBMCs. Particularly, CORT, SST/CORT receptors (sst2, sst3, sst5, and sst5TMD4), ghrelin, its acylating enzyme (GOAT), In1-ghrelin variant, and GHSR1b were detected in PBMCs. Their expression was altered in the long-term by diet composition, and in the short-term, during the postprandial phase. Of particular relevance is the postprandial elevation of CORT, sst2, and sst5 expression in PBMCs of subjects under n-3 PUFAs-enriched diet. CONCLUSION: Our results suggest a potential relevant role of CORT/ssts and ghrelin systems in regulating PBMCs response to nutrient intake, which could help to explain the positive effects of n-3 PUFAs-enriched diets in reducing the inflammatory response.


Asunto(s)
Grasas de la Dieta/farmacología , Ghrelina/sangre , Leucocitos Mononucleares/efectos de los fármacos , Neuropéptidos/sangre , Periodo Posprandial/efectos de los fármacos , Anciano , Dieta Mediterránea , Dieta Occidental , Ácidos Grasos Omega-3/farmacología , Femenino , Ghrelina/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/prevención & control , Leucocitos Mononucleares/fisiología , Masculino , Neuropéptidos/genética , Neuropéptidos/metabolismo , Nutrigenómica/métodos , Receptores de Somatostatina/genética , Somatostatina/genética
7.
Endocrinology ; 155(3): 1067-79, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24424048

RESUMEN

Reproduction is sensitive to insufficient body energy reserves, especially in females. Metabolic regulation of the male reproductive axis is less obvious, and the impact of conditions of persistent energy excess has received moderate attention. Yet, the escalating prevalence of obesity and the clinical evidence of its deleterious effects on male fertility have raised considerable concerns. We report here phenotypic and mechanistic studies of the reproductive impact of postnatal nutritional manipulations (mainly overnutrition) coupled to a high-fat diet (HFD) after weaning. Metabolic and hormonal analyses in young (4 months old) and middle-aged (10 months old) animals revealed that HFD caused profound metabolic perturbations, including glucose intolerance, which were worsened by precedent postnatal overfeeding; these were detectable already in young males but aggravated in 10-month-old rats. Impairment of reproductive parameters took place progressively, and HFD alone was sufficient to explain most of these alterations, regardless of postnatal under- or overnutrition. In young males, testosterone (T) levels and steroidogenic enzyme expression were suppressed by HFD, without compensatory increases of LH levels, which were in fact partially inhibited in heavier males. In addition, obese males displayed suppressed hypothalamic Kiss1 expression despite low T, and HFD inhibited LH responses to kisspeptin. Overweight anticipated some of the neuroendocrine effects of aging, such as the suppression of hypothalamic Kiss1 expression and the decline in serum T and LH levels. Nonetheless, HFD per se caused a detectable worsening of key reproductive indices in middle-aged males, such as basal LH and FSH levels as well as LH responses to kisspeptin. Our study demonstrates that nutritional stress, especially HFD, has a profound deleterious impact on metabolic and gonadotropic function as well as on the Kiss1 system and precipitates neuroendocrine reproductive senescence in the male.


Asunto(s)
Dieta Alta en Grasa , Hipogonadismo/metabolismo , Hipogonadismo/patología , Kisspeptinas/metabolismo , Sistemas Neurosecretores/fisiología , Obesidad/patología , Animales , Peso Corporal , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Hipogonadismo/etiología , Hipotálamo/metabolismo , Hibridación in Situ , Hormona Luteinizante/sangre , Masculino , Obesidad/complicaciones , Fenotipo , Ratas , Ratas Wistar , Reproducción , Factores Sexuales , Testosterona/metabolismo , Factores de Tiempo
8.
Endocrinology ; 154(7): 2393-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23696563

RESUMEN

l-arginine (l-Arg) rapidly stimulates GH and insulin release in vivo. It has been hypothesized that l-Arg stimulates GH release by lowering hypothalamic somatostatin (SST) tone. l-Arg may also act directly at the pituitary to stimulate GH release. Moreover, l-Arg has a direct stimulatory effect on ß-cells, which is thought to be blunted by the release of SST from pancreatic δ-cells. To confirm the role of endogenous SST on l-Arg-induced GH and insulin release, wild-type (WT) and SST-knockout (SST-KO) mice were injected with l-Arg (ip; 0.8 g/kg), and pre-/post-injection GH, insulin, and glucose levels were measured. In WT mice, l-Arg evoked a 6-fold increase in circulating GH. However, there was only a modest increase in GH levels in WT pituitary cell cultures treated with l-Arg. In contrast, l-Arg failed to increase GH in SST-KO beyond their already elevated levels. These results further support the hypothesis that the primary mechanism by which l-Arg acutely increases GH in vivo is by lowering hypothalamic SST input to the pituitary and not via direct pituitary effects. Additionally, l-Arg induced a clear first-phase insulin secretion in WT mice, but not in SST-KO. However, SST-KO, but not WT mice, displayed a robust and sustained second-phase insulin release. These results further support a role for endogenous SST in regulating l-Arg-mediated insulin release.


Asunto(s)
Arginina/farmacología , Hormona del Crecimiento/metabolismo , Insulina/metabolismo , Somatostatina/metabolismo , Animales , Células Cultivadas , Femenino , Glucosa/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Somatostatina/genética
9.
Am J Physiol Endocrinol Metab ; 300(1): E46-54, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20943754

RESUMEN

Somatostatin (SST) inhibits growth hormone (GH) secretion and regulates multiple processes by signaling through its receptors sst1-5. Differential expression of SST/ssts may contribute to sex-specific GH pattern and fasting-induced GH rise. To further delineate the tissue-specific roles of SST and sst1-5 in these processes, their expression patterns were evaluated in hypothalamus, pituitary, and stomach of male and female mice under fed/fasted conditions in the presence (wild type) or absence (SST-knockout) of endogenous SST. Under fed conditions, hypothalamic/stomach SST/ssts expression did not differ between sexes, whereas male pituitary expressed more SST and sst2A/2B/3/5A/5TMD2/5TMD1 and less sst1, and male pituitary cell cultures were more responsive to SST inhibitory actions on GH release compared with females. This suggests that local pituitary SST/ssts can contribute to the sexually dimorphic pattern of GH release. Fasting (48 h) reduced stomach sst2A/B and hypothalamic SST/sst2A expression in both sexes, whereas it caused a generalized downregulation of pituitary sst subtypes in male and of sst2A only in females. Thus, fasting can reduce SST sensitivity across tissues and SST input to the pituitary, thereby jointly contributing to enhance GH release. In SST-knockout mice, lack of SST differentially altered sst subtype expression levels in both sexes, supporting an important role for SST in sex-dependent control of GH axis. Evaluation of SST, IGF-I, and glucocorticoid effects on hypothalamic and pituitary cell cultures revealed that these hormones could directly account for alterations in sst2/5 expression in the physiological states examined. Taken together, these results indicate that changes in SST output and sensitivity can contribute critically to precisely define, in a tissue-dependent manner, the sex-specific metabolic regulation of the GH axis.


Asunto(s)
Ayuno/metabolismo , Mucosa Gástrica/metabolismo , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/fisiología , Secuencias de Aminoácidos , Animales , Línea Celular , Células Cultivadas , Corticosterona/sangre , Ayuno/sangre , Femenino , Regulación de la Expresión Génica , Hormona del Crecimiento/sangre , Hormona del Crecimiento/genética , Hipotálamo/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Hipófisis/citología , Hipófisis/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores de Somatostatina/genética , Caracteres Sexuales , Somatostatina/análogos & derivados , Somatostatina/genética
10.
Cell Mol Life Sci ; 67(7): 1147-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20063038

RESUMEN

Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca(2+)]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.


Asunto(s)
Receptores de Somatostatina/metabolismo , Animales , Secuencia de Bases , Células CHO , Calcio/metabolismo , Línea Celular , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Femenino , Hipotálamo/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neoplasias Hipofisarias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Receptores de Somatostatina/análisis , Receptores de Somatostatina/genética
11.
Mol Cell Endocrinol ; 317(1-2): 154-60, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20035826

RESUMEN

Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.


Asunto(s)
Aciltransferasas/metabolismo , Hipotálamo/enzimología , Hipófisis/enzimología , Estómago/enzimología , Aciltransferasas/genética , Animales , Células Cultivadas , Ayuno , Dosificación de Gen , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Hormona Liberadora de Hormona del Crecimiento/farmacología , Hipotálamo/efectos de los fármacos , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Leptina/farmacología , Proteínas de la Membrana , Ratones , Neuropéptido Y/farmacología , Obesidad/enzimología , Hipófisis/citología , Hipófisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/farmacología , Estómago/efectos de los fármacos
12.
Mol Cell Endocrinol ; 286(1-2): 155-68, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18258353

RESUMEN

Somatostatin (SST) was first described over 30 years ago as a hypothalamic neuropeptide which inhibits GH release. Since that time a large body of literature has accumulated describing how endogenous SST mediates its effects on GH-axis function under normal conditions and in response to metabolic extremes. This review serves to summarize the key findings in this field with a focus on recent progress, much of which has been made possible by the availability of genetically engineered mouse models and SST receptor-specific agonists.


Asunto(s)
Hormona del Crecimiento/fisiología , Somatostatina/fisiología , Envejecimiento/fisiología , Animales , Femenino , Ghrelina/fisiología , Hormona Liberadora de Hormona del Crecimiento/fisiología , Humanos , Hipotálamo/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Obesidad/metabolismo , Hipófisis/fisiología , Factores Sexuales
13.
Endocrinology ; 148(10): 4601-11, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17595226

RESUMEN

It is well established that reproductive function is metabolically gated. However, the mechanisms whereby energy stores and metabolic cues influence fertility are yet to be completely deciphered. Recently, the hypothalamic KiSS-1/GPR54 system has emerged as a fundamental regulator of the gonadotropic axis, which conveys the modulatory actions of sex steroids to GnRH neurons. Evidence is also mounting that KiSS-1 neurons may also represent the link between systemic metabolic signals and central control of reproduction. To further explore this possibility, we examined the impact of changes in energy status and key metabolic regulators on the hypothalamic expression of KiSS-1 and GPR54 genes, using different mouse models and the hypothalamic cell line N6. Time-course analysis of the effects of short-term fasting revealed a rapid (12- and 24-h) decline in KiSS-1 and GPR54 mRNA levels, which preceded that of GnRH (48 h). In contrast, diet-induced obesity or obesity associated with leptin deficiency (ob/ob vs. wild-type mice) failed to induce overt changes in hypothalamic expression of KiSS-1 and GPR54 genes. However, leptin infusion of ob/ob mice evoked a significant increase in KiSS-1 and GPR54 mRNA levels compared with pair-fed controls. Moreover, leptin, but not insulin or IGF-I, stimulated KiSS-1 mRNA expression in the mouse hypothalamic cell line N6. In addition, neuropeptide Y (NPY) null mice showed decreased KiSS-1 mRNA levels at the hypothalamus, whereas exposure to NPY increased expression of KiSS-1 in hypothalamic N6 cells. In sum, our present data further characterize the functional relevance and putative key mediators (such as leptin and NPY) of the metabolic regulation of the hypothalamic KiSS-1 system in the mouse.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Leptina/farmacología , Neuropéptido Y/farmacología , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Animales , Línea Celular , Dieta , Ayuno/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/citología , Kisspeptinas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Neuropéptido Y/deficiencia , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , ARN Mensajero/metabolismo , Receptores de Kisspeptina-1
14.
J Mol Endocrinol ; 38(5): 511-21, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17496153

RESUMEN

The mouse ghrelin gene contains 5 exons (Ex), with Ex2-Ex5 encoding a 117 amino acid preproprotein that is processed to yield a 28 amino acid mature peptide. The current study examined if pituitary (PIT) and hypothalamus (HPT) ghrelin expression is up-regulated in response to fasting and down-regulated in obesity, as previously reported in the stomach. In the process of establishing a quantitative real-time RT-PCR system to accurately assess the changes in PIT and HPT ghrelin mRNA levels, we observed that primer sets located in Ex2 and Ex3 amplified a ghrelin transcript that contained the entire intron 2 (In2). Size and sequence analysis of RT-PCR products using multiple primer sets located throughout the ghrelin gene suggested that the In2-ghrelin variant contains Ex2 and Ex3, but lacks Ex1, Ex4, and Ex5. In2-ghrelin variant mRNA was not detected in stomach extracts, while expression levels were 10- and 50-fold greater than that of the native ghrelin transcript in the PIT and HPT respectively. In2-ghrelin variant mRNA levels increased in the PIT after 24 h fasting and decreased in the HPT and PIT of diet-induced obese mice. These changes may be due to the changes in circulating insulin or IGF-I, since both decreased In2-ghrelin variant expression in a mouse HPT cell line (N6) and in primary mouse PIT cell cultures. The fact that In2-ghrelin variant mRNA levels are dependent on energy intake in the PIT and HPT suggests that this transcript may encode a peptide important in coordinating the neuroendocrine response to metabolic stress.


Asunto(s)
Regulación de la Expresión Génica , Hipotálamo/metabolismo , Hormonas Peptídicas/genética , Hipófisis/metabolismo , Estrés Fisiológico/metabolismo , Animales , Secuencia de Bases , Ayuno/metabolismo , Femenino , Ghrelina , Intrones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Obesidad/metabolismo , Hormonas Peptídicas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Endocrinology ; 148(1): 300-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17038558

RESUMEN

To determine whether the severity of the catabolic condition differentially regulates the GH axis, male mice were either fed ad libitum or fasted for 12, 24, and 48 h. Hypothalami, pituitaries, and stomachs were collected for assessment of mRNA levels by quantitative real-time RT-PCR, and blood collected for measurement of plasma hormone and metabolite levels by commercial assay kits. Overnight (12 h) fasting resulted in a significant suppression of circulating glucose, insulin, IGF-I, and leptin levels and an increase in corticosterone, free fatty acids, and n-octanoyl ghrelin levels, and these directional changes were maintained at the 24- and 48-h time points. Fasting (24 h) also increased circulating GH levels, which was associated with an increase in pituitary mRNA levels for GHRH receptor and ghrelin receptor and a decrease in mRNA levels for somatostatin (SST) receptor (SSTR) subtypes, SSTR2, SSTR3, and SSTR5, where the changes in ghrelin receptor and SSTR expression persisted after 48 h fasting. Hypothalamic SST mRNA levels were not altered by fasting, whereas there was a transient rise in stomach SST mRNA levels 24 h after food withdrawal. In contrast, there was a biphasic effect of fasting on GHRH expression. GHRH mRNA levels were significantly elevated at 12 and 24 h but fell to approximately 50% of fed controls 48 h after food withdrawal. A sequential rise in hypothalamic neuropeptide Y (NPY) and CRH mRNA levels preceded the fall in GHRH expression, where fasting-induced changes in CRH and GHRH mRNA levels were not observed in 48-h-fasted NPY knockout mice. These observations, in light of previous reports showing both NPY and CRH can inhibit GHRH expression and GH release, suggest that these neuronal systems may work in concert to control the ultimate impact of fasting on GH axis function.


Asunto(s)
Hormona Liberadora de Corticotropina/sangre , Ayuno/fisiología , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/fisiología , Neuropéptido Y/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Glucemia/metabolismo , Hormona Liberadora de Corticotropina/genética , Metabolismo Energético/fisiología , Ácidos Grasos no Esterificados/sangre , Ghrelina , Hormona Liberadora de Hormona del Crecimiento/genética , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptido Y/genética , Hormonas Peptídicas/sangre , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ghrelina , Receptores de Somatostatina/genética , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA